
 13528904 – George Luther

Understanding the latent space of Varia3onal Autoencoders and

Oversampling Imbalanced Classes

 George Luther (George.Luther1@hotmail.com)

Introduc)on

The aim of this project is to explore the use of Varia%onal Autoencoders (VAEs) in tackling

the issue of imbalanced datasets using the MNIST dataset. The project focuses on genera?ng

synthe?c data via a VAE to oversample underrepresented classes, balancing the dataset and

evalua?ng both datasets on a Mul%layer Perceptron. Addi?onally, this project delves deep

into the VAE model by examining its latent space, which can reveal valuable insights about

how the model learns representa?ons of the data. Although the MNIST dataset does not have

widely imbalanced classes, it was primarily used to examine the latent space of the model

more intui?vely. This project is therefore a combina?on of delving deep into a specific model

and programming an applica?on of its use-case (both op?ons).

The inspira?on behind this project came from an ar?cle (Jordan, 2018) that visualizes the

latent space and explains VAEs intui?vely. As an extension to this ar?cle, further visualiza?ons

of the latent space with different parameters were done along with an applica?on in

oversampling imbalanced datasets.

Varia)onal Autoencoders (VAE)

VAE Fundamentals

The Varia?onal Autoencoder (VAE) works by inser?ng a stochas?c element into its latent

space. Instead of encoding the input directly into a low dimensional representa?on, the VAE

encodes the latent space as a probability distribu?on, calcula?ng the mean and variance of

the latent vectors. These vectors are sampled using the reparameteriza?on trick and are

compared to a prior distribu?on (in this project, we set this as the normal distribu?on). The

stochas?c elements are called the latent aSributes which describe different characteris?c cs

of the input data. This probabilis?c nature of the VAE’s latent space is what differen?ates them

from determinis?c models like transformers.

Loss Func%on

mailto:George.Luther1@hotmail.com

 13528904 – George Luther

The VAE combines principles from Bayesian sta?s?cs and neural networks, making it

par?cularly useful for genera?ve tasks. The model’s architecture includes key components

such as Kullback-Leibler Divergence (KLD) and Binary Cross Entropy (BCE), which combine to

form the loss func?on that is used to train the model. These will be further explained in the

applica?on part of the guide, where a simpler version of the KLD which uses the normal

distribu?on as a prior probability distribu?on was used.

Applica%on of the model and outputs

The encoder and decoder phases of the model are described in Code Snippet 1 (CS 1), where

the input data is first flaSened into a vector of 28 x 28 = 784 elements (equivalent to pixel size

of MNIST images). Next, it is passed through a fully connected layer with 200 neurons

compressing the input data, it is then passed into the latent dimension with 200 elements and

dimensionality equivalent to the code_size. This dimension parameter controls how many

latent aSributes we have, where latent aSributes explain the variability in the data. In the

VAE, the mean and variance are computed, defined as loc and scale in the code snippet:

• loc: The mean of the learned latent distribu?on.

• scale: The standard devia?on (or variance) of the learned latent distribu?on, where

the so_ plus ac?va?on func?on ensures posi?ve values.

The decoder phase takes the input of the has the same dimensions of the encoder but in

reverse order, star?ng with the input being code_size, through a fully connected layer and

expanding the latent representa?on back to 28 x 28, reconstruc?ng the image.

 13528904 – George Luther

Code Snippet 1. The encoder and decoder definitions of our VAE model.

In CS 2, we can see the VAE model defined as containing the previously mentioned

encoder and decoder architecture from CS 1. In the forward pass function, the loc and

scale are obtained as an output from the encoder and the reparameterization trick is

used. The reparameterization trick is sampling a point from a standard normal

distribution (mean 0, variance 1) with the same shape as std. This random value

represents the noise component needed to introduce stochasticity in the latent space,

allowing us to generate new unseen samples. This value is then passed through the

decoder, representing the input.

 13528904 – George Luther

Code Snippet 2. VAE model combining both the encoder and decoder, including the reparameterization trick.

The total loss function is defined in CS 3 as a combination of BCE and KLD. The BCE loss

measures the diRerence between the reconstructed data, recon_x and the input, x. The

KLD on the other hand measures the diRerence between two probability distributions. It

measures how close the distribution between the two latent variables, loc and scale (or

mean and variance) are to the normal distribution (mean=0 and variance = 1). KLD acts

as a regularization term by encouraging the latent space to be like a standard normal

distribution and prevents overfitting by ensuring the latent variables follow a smooth,

continuous distribution. The original paper on VAEs contains more information and

derivations of the KLD and other loss functions that could possibly be used such as

Monte-Carlo sampling (Kingma, 2013)

Code Snippet 3. The loss function for our VAE defined as BCE+KLD.

 13528904 – George Luther

Preprocessing and training the models

The dataset is loaded and a batch size of 100 is set throughout this report, where the batch

size controls how o_en we update the gradient during backpropaga?on. Three models are

instan?ated with different dimensions in their latent space: 2, 10 and 100. These models are

then trained for 25 epochs where the training loop can be seen in CS 4 where the gradient is

stored for each input and updated on every 100th input. Adam (Adap?ve Moment Es?ma?on),

a version of gradient descent that dynamically adjusts the learning rate is used as the

op?miza?on func?on during training, with learning rate set to 0.001. The func?ons defined in

previous code snippets are used in the training loop and the model is set to evalua?on mode,

and gradient updates have been turned off to finally test the model.

Code Snippet 4. The training loop for multiple VAE models with diIerent dimensions in their latent space, then
added to a dictionary called trained_models.

 13528904 – George Luther

Exploring the latent space using different code_size

The code_size refers to the number of dimensions in the latent space. In a VAE, the number

of dimensions refer to two vectors which are described by a mean and variance. In Figure 1,

we can see a that when the latent space is set to 2-dimensions (i.e., code_size=2) using PCA

for dimensionality reduc?on on the encoded data, the classes are more separable as the

model only relies on these two dimensions to capture the paSerns within the data. When we

include 10 or 100 dimensions to describe the MNIST data, projec?ng this higher dimensional

representa?on into two dimensions using PCA results in less visible variance. This occurs

because the other dimensions encode various other characteris?cs of the digits, such as

different strokes, thickness of lines, sharp edges of digits that cannot all be captured in a 2D

projec?on.

 13528904 – George Luther

Figure 1. DiIerent dimensions of the latent space for the MNIST data.

 13528904 – George Luther

Figure 2 shows the latent space of a 2-dimensional VAE. In this example, we traverse the

2-dimensional latent space at each coordinate and pass the coordinate through the

decoder, allowing us to visualize the distribution of the latent space. In this image, we can

see digits with similar characteristics closer together. For example, digit 1 is in the top-

left hand corner and slowly transitions to 9, i.e., the model determines that these digits

have similar characteristics and places them near each other in the latent space.

Because the number of dimensions is limited, the other digits are less distinct or

“fuzzified” but can be distinguished.

Figure 2. The latent space of a 2-dimensional VAE projected into a grid.

 13528904 – George Luther

Oversampling with VAEs

Referring to Figure 3, we can see the distribu?on of the MNIST data where the dataset is not

balanced. This provides an opportunity to generate synthe?c data learned on the training

samples and run the model through a Mul?layer perceptron and assess model performance.

In this sec?on, we use the same model architecture and parameters from CS 1-3 to provide a

solu?on for imbalanced datasets.

Figure 3. The class distribution of the MNIST dataset.

Ini?ally, we train 10 different VAE models, one for each class of the MNIST digit. These models

are stored in a dic?onary and accessed at a later stage to sample points from the latent space

of each model. CS 5 shows the training of the model, where 50 epochs were used with a batch

size of 100.

 13528904 – George Luther

Code Snippet 5. The code used to create 10 diIerent VAE models, one for each class label in the MNIST dataset.

Synthe?cally generated inputs that we will be using as training data are shown in Figure 4,

where the digits are seen as noisy. This is a typical output from a VAE as it generates points

from a distribu?on. A_er this stage, 10,000 inputs are generated for each class and are used

as training. The test set was the unseen MNIST data that was held-out when training. CS 6

shows a simple MLP architecture used to train the synthe?c and original inputs. Here, the

model has a 28 x 28 = 784 input along with a fully connected layer with 200 neurons. The final

layer contains 10 neurons where a so_-max func?on is applied to squeeze the values across

all classes between 0 and 1, where the neuron with the highest value is the class that is

selected by the model.

 13528904 – George Luther

Figure 4. Synthetically generated inputs used as training from each VAE model, one for each class.

Code Snippet 6. MLP classifier used to train synthetic and non-synthetic data.

6. Handling Imbalanced Datasets

The MNIST dataset is slightly imbalanced, with certain digits being more frequent than others.

To address this, we used the VAE to generate synthe%c samples for the underrepresented

classes. These synthe?c samples were added to the training set to balance the dataset. Two

models were trained, one with synthe?c and one with the non-synthe?c samples and

evaluated. Figures 5-6 show the confusion matrix for a basic MLP model trained on

Imbalanced (Original) MNIST data and synthe?c data, respec?vely. The original dataset

 13528904 – George Luther

outperformed the synthe?cally generated one based on the confusion matrix. The original

data had a hard ?me differen?a?ng between 2 and 7, and 4 and 9, where the synthe?cally

trained model had a hard ?me differen?a?ng between 5 and 8, and 5 and 3. The synthe?cally

trained model relies on the output of a VAE as input where 5, 3, and 8 are mapped around the

same space. Thus, a synthe?cally generated 5 could have some aSributes of 3 and 8, and vice

versa, explaining this phenomenon. The original and synthe?cally trained models had an

accuracy score across all 10 class labels of 98.05% and 89.60% respec?vely, where the original

data outperformed synthe?c by 8.45%. This shows that the synthe?cally generated dataset is

not useful in this context of slightly imbalanced classes. However, with further

hyperparameter fine-tuning and construc?on of the latent space, model performance can

poten?ally exceed the original data by introducing gaussian varia?ons to the input that act as

a regulariza?on term.

Figure 5. Confusion Matrix for an MLP trained on an Imbalanced Dataset.

 13528904 – George Luther

Figure 6. Confusion Matrix for an MLP trained on a Synthetically Generated Dataset via a VAE.

In Figure 7, we see the MLP models predic?ons, trained on the imbalanced MNIST dataset,

where it struggles with certain class predic?ons. Digits such as 2, 7, 4 and 9 appear to be

challenging for the model to differen?ate. This confusion may be due to the visual similari?es

between the shapes of these digits, especially when the digits are wriSen in an italics style,

where they appear ambiguous even to the human eye. For instance, handwriSen 7s may

some?mes be mistaken for 2s if the wri?ng style lacks dis?nct features and vice versa.

Figure 7. Misclassified Images for an MLP model trained with the original MNIST data.

 13528904 – George Luther

Figure 8 illustrates incorrectly predicted class labels for an MLP model trained on

synthetically generated data. The MLP model has diRiculty distinguishing between digits

like 5, 8, and 3, where the latent space created by the Variational Autoencoder might have

mapped these digits close together, also supported by the confusion matrix in Figure 6.

This results in overlapping features being assigned to diRerent classes. For example,

synthetic digits generated by the VAE for the 5 class could share attributes with the 3 or 8

class, leading to misclassification. We suggest that while VAEs are useful for generating

synthetic data, fine-tuning of the latent space is required to ensure that there is no

confusion for classes with similar characteristics.

Figure 6. Misclassified Images for an MLP model trained with the original MNIST data.

Concluding Remarks

In conclusion, the latent space was thoroughly examined in a VAE model with different

dimensions. It was found that an increase in the dimension decreases the variability between

two principal components as there are more latent aSributes to explain variability. When

synthe?c and original MNIST data were compared in an MLP model, the MLP that was trained

on the original data outperformed the synthe?c version by 8.45%.

The intui?on behind why this oversampling with a poten?al model performance improvement

would prove useful was due to the gaussian noise that a VAE can add from genera?ng

synthe?c data, ac?ng as a regulariza?on factor and generalizing beSer to unseen data. In this

project, this was not confirmed due to ?me and computa?on constraints however, with more

hyperparameter fine-tuning and experimenta?on on different datasets, this approach could

poten?ally prove useful in boos?ng model performance.

 13528904 – George Luther

References

Jordan, J. (2018, March 19). Varia*onal autoencoders. Jeremy Jordan.

hSps://www.jeremyjordan.me/varia?onal-autoencoders/

Kingma, D. P., & Welling, M. (2013, December 20). Auto-Encoding Varia*onal Bayes. ArXiv.org.

hSps://arxiv.org/abs/1312.6114

https://www.jeremyjordan.me/variational-autoencoders/
https://arxiv.org/abs/1312.6114

